
CS 4100: Introduction to AI

Wayne Snyder
Northeastern University

Lecture 16: Reinforcement Learning; Genetic Algorithms

Plan for today:

o Introduction to Reinforcement Learning
• Relationship to Supervised and Unsupervised Learning
• Machine Learning Framework
• Basic Concepts and Terms
• Applications

o Genetic Algorithms
• Basic Concepts and Terms
• Application: The Prisoner's Dilemma

Reinforcement Learning

Reinforcement Learning

Reinforcement Learning

In Supervised Learning we have

Data Source: Labelled data (Lots of it!)

Framework: Train on labelled data, test on labelled
data with labels withheld.

Problem to be Solved: given unlabelled data in future,
label it!

Reinforcement Learning

In Unsupervised Learning we have

Data source: Unlabelled data (lots of it!)

Method: Clustering algorithms (many!)

Problem to be Solved : Find patterns in data,
classification, exploratory data analysis, etc.

Reinforcement Learning
How is Reinforcement Learning Different?

Data Source: An Agent interacting with an
Environment.

Framework: The Agent performs Actions and changes
its State over time following a Policy, and gets
Rewards from the Environment. A heuristic function
gives the projected Value of an action in a given state.

Problem to be Solved : Learn a policy which will
maximize cumulative reward over time.

Reinforcement Learning
Our main task today is to understand the following concepts:

1. Environment
2. State
3. Action
4. Reward
5. Value
6. Policy
7. Agent
8. Model

But before we get into the details, let's consider a number of situations
where RL has been used.

Reinforcement Learning: Examples
Drones

Reinforcement Learning: Examples
Cooling and Heating of Industrial Buildings

Reinforcement Learning: Examples
Industrial Robots

Reinforcement Learning: Examples
Traffic Flow in Cities

Reinforcement Learning: Examples
Games

Reinforcement Learning: Basic Concepts

Environment

The Environment is very broadly defined as the context in which the
agent acts to achieve rewards. Generally it can be thought of as a
physical space in which the agent moves, senses, acts, and receives
rewards.

It may be:

• Discrete or Continuous (with corresponding notion of time)

• Deterministic or stochastic

• Fully observable or Partial observable

• Contain other agents or not

• Be static or dynamic

The environment is typically modeled as a state space.....

Reinforcement Learning: Basic Concepts

State

The state is "whatever information is available to the agent about its
environment,", most typically, a representation of the position in the
environment at a particular time step.

It may be produced by observation with sensors (where am I?) or
maintained as an internal "memory."

Typically represented as a vector of floating-point numbers.

[Technical detail: States are assumed to have a Markov Property, meaning
there is no "memory" of previous states. More on this next week, when we
explore the notion of Markov Decision Processes, which is the basic
mathematical framework for describing RL problems.]

Action

An action is the mechanism by which the agent transitions to a new state in
the environment.

Reinforcement Learning: Basic Concepts

Reward

Often called the Reward Signal, this is a floating-point number representing
some unit of value.

The reward signal specifies what are "good" and "bad" outcomes for the
agent through time.

Rewards may be received incrementally or all at once at the end.

Value

The Value Function V(s) maps states to floating-point numbers indicating
the expected total reward for an agent starting from state s.

Roughly, a value function is a heuristic function such as we have seen in
best-first search and Min/Max, which estimates future cumulative rewards.

Reinforcement Learning: Basic Concepts

Two caveats: First, carefully distinguish value and rewards; from the
classic book on RL by Sutton and Barto:

For now, just think of it like the h(x) function in A* or the eval(...)
function in adversarial search.....

Second, there are significant classes of RL algorithms, such as Genetic
Algorithms, which do not use a value function at all.

We will look at genetic algorithms later in the lecture....

Reinforcement Learning: Basic Concepts

Also, there are significant classes of RL algorithm, such as
Evolutionary Algorithms, which do not use a value function.

From the classic book on RL by Sutton and Barto:

For now, just think of it like the h(x) function in A* or the eval(...)
function in adversarial search.....

Reinforcement Learning: Basic Concepts
Policy

A Policy is an algorithm which takes a current state and outputs an action:
given where I am, what to do next?

Learning an optimal policy is the entire point of an RL system; an optimal
policy is one which maximizes the cumulative reward over time.

Policies can be
• Deterministic (mapping from states to actions); or
• Stochastic (given a state, return a probability distribution over possible

actions).

Agent

The Agent in all this is simply the algorithm that organizes all this activity:
It makes state transitions (possibly based on observations), consults the
Policy, and takes actions, moving to the next state. It updates the Policy
based on rewards and values.

Reinforcement Learning: Basic Concepts

One more term: Model

A concept that may or may not play a role in a RL program is a model
of the environment, which gives information (e.g., probabilities) about
what will happen (reward and next state).

The model may be:
• Fixed for all time;
• Something learned over time; or
• Unknown.

Models are generally of two types:
• Distribution Model: Given a state s and possible action a, give the

probability p of receiving reward r and transitioning to state s'.
• Sampling Model: Given a state s and possible action a, give the

reward r and next state s', based on simulation, search, or a record of
past experience.

"Model Free" or "Trial-and-Error Learning" – Can not search,
can only update policy based on current state and reward.

"Model Based" – could use planning and/or search using the
model to predict next states and rewards.

Reinforcement Learning: Basic Concepts

Wait, wait, one more: How is the training organized?

The possibilities are:

o Multiple trials with some resource limit (e.g., maximum number of
time steps);

o No training: system self-organizes over time; or

o Some combination of the two.

Reinforcement Learning: Simple Examples

Example One

An agent is searching for food in a 4x4 grid laid out as follows:

• Environment: 4x4 grid as shown

• Agent: Hungry blob

• State: location of agent: (x,y)

• Action: move R,L,U,D

• Reward:
• No fruit: -1 (goes hungry, uses energy)

• Pear: 5

• Apple: 10

Reinforcement Learning: Simple Examples

At first, there is no policy other than making random moves.....

• Environment: 4x4 grid as shown

• Agent: Hungry blob

• State: location of agent: (x,y)

• Action: move R,L,U,D

• Reward:
• No fruit: -1 (goes hungry, uses energy)

• Pear: 5

• Apple: 10

Reinforcement Learning: Simple Examples

But after many trials, the agent compares policies, and selects the best
one. Here are the two best policies:

Reinforcement Learning: Simple Examples

We can add other components to speed up the learning....

1. A value function calculates the Euclidean distance Dpear and Dapple
from the current state to each piece of fruit, and returns:

5 – Dpear + 10 – Dapple
2

2. The agent can make observations of a neighboring cell to determine
whether it contains fruit at a cost of -0.25 per observation.

3. The agent learns a model of the environment by recording the
locations of the pieces of fruit, and can use that information to plan a
more direct route next time.

Reinforcement Learning: Simple Examples

We can add other components to speed up the learning....

1. A value function calculates the Euclidean distance Dpear and Dapple
from the current state to each piece of fruit, and returns:

5 – Dpear + 10 – Dapple
2

2. The agent can make observations of a neighboring cell to determine
whether it contains fruit at a cost of -0.25 per observation. The agent is
trading off search against following the existing policy.

3. The agent learns a model of the environment by recording the
locations of the pieces of fruit, and can use that information to plan a
more direct route next time.

Reinforcement Learning: Simple Examples

Example Two:

The Multi-Armed Bandit is a generalization of the "one-armed bandits"
that exist in all casinos.

The MAB problem is defined by a set of K random variables, each of
which gives a reward based on some probability distribution:

MAB = (R1, R2, ..., Rk)

And action is to choose an i ∈ 1,2, … , 𝑘 and "pull the level" on the
random variable to receive an award. You typically have a budget of N
pulls of a level. You may have no knowledge of the distributions, or
partial knownledge (e.g., you may know that the RVs are distributed
using a Bernoulli distribution with $1 result with probability p and $0
with probability 1-p).

This simple scenario can model many complex decision-making
situations, such as resource allocation among research departments,
clinical trials, or financial portfolio allocation.

Reinforcement Learning: Simple Examples

This simple problem highlights an important distinction for RL algorithms:

How much should the agent exploit what knowledge it already has about the
levers it has already pulled? (Sometimes called the greedy strategy.)

VS
How much should the agent explore new levers, with possible worst or better
results?

Note that this is not a mutully-exclusive choice: your knowledge of levers
already pulled depends on how many times: do you go with a well-known lever,
or try one that you have not tried much, or a completely known lever?

Environment: (R1, R2, ..., Rk)
State: How many times you pulled each lever and the results
Action: i
Reward: Ri
Value: ??
Model: Estimates of distributions
Policy: Given the state, decide to what extend you pursue the greedy and
exploratory actions to pull the next lever i.

Reinforcement Learning: Simple Examples

Problem Three:

Board Games (e.g., TicTacToe or Connect4)

Note a significant problem with MinMax algorithms:

They assume that both players are following an identical strategy
and have an identical level of expertise.

What if this is not the case? How can you exploit the weaknesses you
notice in an opponent's strategy if you play them over and over?

Example: Humans do not see diagonal wins in Connect 4 as well as
horizontal and vertical wins. Could you design a Connect 4 program to
learn to exploit this weakness after playing many games against human
opponents?

[AlphaGo's designers used RL extensively to train the system, and an
essential part of GPT-3 and GPT-4 (just released!) training used human
interactions.]

Reinforcement Learning: Simple Examples

RL for Board Games

Genetic Algorithms as RL

Genetic Algorithms are a special subclass of RL algorithms with the
following characteristics:

No model
No Value function
Multiple agents
Environment = a collection of agents
Policy = array of numbers

Genetic Algorithms as RL

Framework for learning:

Multiple agents (arrays of numbers) compete with each other, and receive
immediate rewards.

On the basis of the rewards, the agents can
• Die
• Produce offspring through:

• Mutation: Make small (usually random) changes in the numbers
• Crossover: Breed with other successful agents

To explore genetic algorithms, we'll use a simple but powerful game called
the Prisoner's Dilemma....

Prisoner's Dilemma

Prisoner's Dilemma

Prisoner's Dilemma
Why this has been studied for many decades!

Prisoner's Dilemma
Why this has been studied for many decades!

Prisoner's Dilemma

Prisoner's Dilemma

Prisoner's Dilemma

