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Plan for today:

o Introduction to Reinforcement Learning
• Relationship to Supervised and Unsupervised Learning
• Machine Learning Framework
• Basic Concepts and Terms
• Applications

o Genetic Algorithms
• Basic Concepts and Terms
• Application: The Prisoner's Dilemma

Reinforcement Learning
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Reinforcement Learning

In Supervised Learning we have

Data Source:  Labelled data (Lots of it!)

Framework: Train on labelled data, test on labelled 
data with labels withheld. 

Problem to be Solved: given unlabelled data in future, 
label it!



Reinforcement Learning

In Unsupervised Learning we have

Data source:  Unlabelled data (lots of it!)

Method: Clustering algorithms (many!)

Problem to be Solved : Find patterns in data, 
classification, exploratory data analysis, etc. 



Reinforcement Learning
How is Reinforcement Learning Different?

Data Source:  An Agent interacting with an 
Environment. 

Framework:  The Agent performs Actions and changes 
its State over time following a Policy, and gets 
Rewards from the Environment.  A heuristic function 
gives the projected Value of an action in a given state.  

Problem to be Solved :  Learn a policy which will 
maximize cumulative reward over time. 



Reinforcement Learning
Our main task today is to understand the following concepts:

1. Environment
2. State
3. Action
4. Reward
5. Value
6. Policy
7. Agent
8. Model

But before we get into the details, let's consider a number of situations 
where RL has been used.



Reinforcement Learning: Examples
Drones



Reinforcement Learning: Examples
Cooling and Heating of Industrial Buildings



Reinforcement Learning: Examples
Industrial Robots



Reinforcement Learning: Examples
Traffic Flow in Cities



Reinforcement Learning: Examples
Games



Reinforcement Learning: Basic Concepts

Environment

The Environment is very broadly defined as the context in which the 
agent acts to achieve rewards.  Generally it can be thought of as a 
physical space in which the agent moves, senses, acts, and receives 
rewards. 

It may be:

• Discrete or Continuous  (with corresponding notion of time)

• Deterministic or stochastic

• Fully observable or Partial observable

• Contain other agents or not

• Be static or dynamic

The environment is typically modeled as a state space.....



Reinforcement Learning: Basic Concepts

State

The state is "whatever information is available to the agent about its 
environment,", most typically, a representation of the position in the 
environment at a particular time step.

It may be produced by observation with sensors (where am I?) or 
maintained as an internal "memory."

Typically represented as a vector of floating-point numbers. 

[Technical detail: States are assumed to have a Markov Property, meaning 
there is no "memory" of previous states. More on this next week, when we 
explore the notion of Markov Decision Processes, which is the basic 
mathematical framework for describing RL problems.] 

Action

An action is the mechanism by which the agent transitions to a new state in 
the environment. 



Reinforcement Learning: Basic Concepts

Reward

Often called the Reward Signal, this is a floating-point number representing 
some unit of value. 

The reward signal specifies what are "good" and "bad" outcomes for the 
agent through time. 

Rewards may be received incrementally or all at once at the end. 

Value

The Value Function V(s) maps states to floating-point numbers indicating 
the expected total reward for an agent starting from state s. 

Roughly, a value function is a heuristic function such as we have seen in 
best-first search and Min/Max, which estimates future cumulative rewards.  



Reinforcement Learning: Basic Concepts

Two caveats:  First, carefully distinguish value and rewards; from the 
classic book on RL by Sutton and Barto:

For now, just think of it like the h(x) function in A* or the eval(...) 
function in adversarial search.....

Second, there are significant classes of RL algorithms, such as Genetic 
Algorithms, which do not use a value function at all.  

We will look at genetic algorithms later in the lecture....



Reinforcement Learning: Basic Concepts

Also, there are significant classes of RL algorithm, such as 
Evolutionary Algorithms, which do not use a value function. 

From the classic book on RL by Sutton and Barto:

For now, just think of it like the h(x) function in A* or the eval(...) 
function in adversarial search.....



Reinforcement Learning: Basic Concepts
Policy

A Policy is an algorithm which takes a current state and outputs an action: 
given where I am, what to do next?

Learning an optimal policy is the entire point of an RL system; an optimal 
policy is one which maximizes the cumulative reward over time. 

Policies can be 
• Deterministic (mapping from states to actions); or
• Stochastic (given a state, return a probability distribution over possible 

actions).

Agent

The Agent in all this is simply the algorithm that organizes all this activity: 
It makes state transitions (possibly based on observations), consults the 
Policy, and takes actions, moving to the next state. It updates the Policy 
based on rewards and values. 



Reinforcement Learning: Basic Concepts

One more term:   Model

A concept that may or may not play a role in a RL program is a model 
of the environment, which gives information (e.g., probabilities) about 
what will happen (reward and next state). 

The model may be:
• Fixed for all time;
• Something learned over time; or
• Unknown. 

Models are generally of two types:
• Distribution Model:  Given a state s and possible action a, give the 

probability p of receiving reward r and transitioning to state s'. 
• Sampling Model: Given a state s and possible action a, give the 

reward r and next state s', based on simulation, search, or a record of 
past experience.  

"Model Free"  or "Trial-and-Error Learning" – Can not search, 
can only update policy based on current state and reward. 

"Model Based" – could use planning and/or search using the 
model to predict next states and rewards. 



Reinforcement Learning: Basic Concepts

Wait, wait, one more: How is the training organized? 

The possibilities are:

o Multiple trials with some resource limit (e.g., maximum number of 
time steps);

o No training: system self-organizes over time; or

o Some combination of the two. 



Reinforcement Learning: Simple Examples

Example One

An agent is searching for food in a 4x4 grid laid out as follows:

• Environment:  4x4 grid as shown

• Agent: Hungry blob

• State:  location of agent: (x,y)

• Action: move R,L,U,D

• Reward:  
• No fruit: -1  (goes hungry, uses energy)

• Pear: 5

• Apple: 10



Reinforcement Learning: Simple Examples

At first, there is no policy other than making random moves.....

• Environment:  4x4 grid as shown

• Agent: Hungry blob

• State:  location of agent: (x,y)

• Action: move R,L,U,D

• Reward:  
• No fruit: -1  (goes hungry, uses energy)

• Pear: 5

• Apple: 10



Reinforcement Learning: Simple Examples

But after many trials, the agent compares policies, and selects the best 
one.  Here are the two best policies:



Reinforcement Learning: Simple Examples

We can add other components to speed up the learning....

1.  A value function calculates the Euclidean distance Dpear and Dapple
from the current state to each piece of fruit, and returns:

5 – Dpear +  10 – Dapple
2

2. The agent can make observations of a neighboring cell to determine 
whether it contains fruit at a cost of -0.25 per observation. 

3.  The agent learns a model of the environment by recording the 
locations of the pieces of fruit, and can use that information to plan a 
more direct route next time. 



Reinforcement Learning: Simple Examples

We can add other components to speed up the learning....

1.  A value function calculates the Euclidean distance Dpear and Dapple
from the current state to each piece of fruit, and returns:

5 – Dpear +  10 – Dapple
2

2. The agent can make observations of a neighboring cell to determine 
whether it contains fruit at a cost of -0.25 per observation. The agent is 
trading off search against following the existing policy. 

3.  The agent learns a model of the environment by recording the 
locations of the pieces of fruit, and can use that information to plan a 
more direct route next time. 



Reinforcement Learning: Simple Examples

Example Two:

The Multi-Armed Bandit is a generalization of the "one-armed bandits" 
that exist in all casinos.

The MAB problem is defined by a set of K random variables, each of 
which gives a reward based on some probability distribution:

MAB = ( R1, R2, ..., Rk)

And action is to choose an i ∈ 1,2, … , 𝑘 and "pull the level" on the 
random variable to receive an award. You typically have a budget of N
pulls of a level. You may have no knowledge of the distributions, or 
partial knownledge (e.g., you may know that the RVs are distributed 
using a Bernoulli distribution with $1 result with probability p and $0 
with probability 1-p). 

This simple scenario can model many complex decision-making 
situations, such as resource allocation among research departments, 
clinical trials, or financial portfolio allocation. 



Reinforcement Learning: Simple Examples

This simple problem highlights an important distinction for RL algorithms:

How much should the agent exploit what knowledge it already has about the 
levers it has already pulled? (Sometimes called the greedy strategy.)

VS
How much should the agent explore new levers, with possible worst or better 
results?

Note that this is not a mutully-exclusive choice: your knowledge of levers 
already pulled depends on how many times: do you go with a well-known lever, 
or try one that you have not tried much, or a completely known lever?

Environment: ( R1, R2, ..., Rk)
State: How many times you pulled each lever and the results
Action: i
Reward:  Ri
Value: ??
Model:  Estimates of distributions
Policy: Given the state, decide to what extend you pursue the greedy and 
exploratory actions to pull the next lever i. 



Reinforcement Learning: Simple Examples

Problem Three:  

Board Games (e.g., TicTacToe or Connect4)

Note a significant problem with MinMax algorithms:

They assume that both players are following an identical strategy 
and have an identical level of expertise. 

What if this is not the case?  How can you exploit the weaknesses you 
notice in an opponent's strategy if you play them over and over?

Example:  Humans do not see diagonal wins in Connect 4 as well as 
horizontal and vertical wins. Could you design a Connect 4 program to 
learn to exploit this weakness after playing many games against human 
opponents?

[AlphaGo's designers used RL extensively to train the system, and an 
essential part of GPT-3 and GPT-4 (just released!) training used human 
interactions.]



Reinforcement Learning: Simple Examples

RL for Board Games



Genetic Algorithms as RL

Genetic Algorithms are a special subclass of RL algorithms with the 
following characteristics:

No model
No Value function
Multiple agents
Environment =  a collection of agents
Policy = array of numbers



Genetic Algorithms as RL

Framework for learning:

Multiple agents (arrays of numbers) compete with each other, and receive 
immediate rewards.

On the basis of the rewards, the agents can
• Die
• Produce offspring through:

• Mutation: Make small (usually random) changes in the numbers
• Crossover: Breed with other successful agents



To explore genetic algorithms, we'll use a simple but powerful game called 
the Prisoner's Dilemma....

Prisoner's Dilemma



Prisoner's Dilemma



Prisoner's Dilemma
Why this has been studied for many decades!



Prisoner's Dilemma
Why this has been studied for many decades!
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